
Monitoring distributed collections using the Audit Control

Environment (ACE)
Michael Smorul

Institute for Advanced Computer
Studies

University of Maryland, College Park
+1-301-405-7092

msmorul@umd.edu

Sangchul Song
 Department of Electrical and

Computer Engineering
Institute for Advanced Computer

Studies
University of Maryland, College Park

+1-301-405-7092

scsong@umiacs.umd.edu

Joseph JaJa
 Department of Electrical and

Computer Engineering
Institute for Advanced Computer

Studies
University of Maryland, College Park

+1-301-405-6722

joseph@umiacs.umd.edu

ABSTRACT

The Audit Control Environment (ACE) is a system which

provides a scalable, auditable platform that actively monitors

collections to ensure their integrity over the lifetime of an archive.

It accomplishes this by using a small integrity token issued for

each monitored item. This token is part of a larger externally

auditable cryptographic system. We will describe how this system

has been implemented for a set of applications designed to run in

an archive or library environment.

ACE has been used for almost two years by the Chronopolis

Preservation Environment to monitor the integrity of collections

replicated between the three independant archive partners. During

this time, ACE has been expanded to better support the

requirements of this distributed archive. We will describe how

ACE has been used and expanded to support the Chronopolis

preservation requirements. We conclude by discussing several

future requirements for integrity monitoring that have been

identified by users of ACE. These include securely monitoring

remote data, monitoring offline data, and scaling monitoring

activities in a way that does not impact the normal operational

activity of an archive.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and

Software; H.3.7 [Information Storage and Retrieval]: Digital

Libraries

General Terms

Reliability, Verification, Security

Keywords

Digital Preservation

1. INTRODUCTION
The ACE[1] system is a set of tools for digital archives and

libraries to monitor and assert the integrity of their collections.

ACE serves two primary functions; first it provides an easy-to-use

interface for archives to monitor and manage their collections.

Second, the integrity information stored in ACE can be

independently verified by a third party to ensure that objects in a

collection have not been modified. While archives have been

using cryptographic digests to verify the integrity of their data,

little has been done to ensure those digests have not been

tampered with. ACE solves this problem by storing a small

integrity token that can be used to externally verify that a digest

has not changed.

2. DESIGN
ACE is an integrity monitoring platform based on creating a

small-size integrity token for each digital object registered into

ACE. This token can be stored either with the object itself or in a

registry at the archive as authenticity metadata.

These tokens are linked together through time spans by an

auditable third party. For each time interval, cryptographic

summary information (CSI) that depends on all the objects

registered during that time interval is generated. The summary

information is very compact, independent of the number or sizes

of the objects ingested. In the current implementation, rounds are

created after 5 seconds have elapsed since the first token request

was received, or a queue of pending requests is full. While

triggering a round on queue size may lead to many more rounds in

a day, it also limits the size of returned tokens.

At the end of each day, all CSI’s generated are aggregated into a

final witness value. This witness value is a single number that is

used to verify all CSI’s issued during the previous day. The value

is expected to be stored in reliable, read-only media, and pubished

over the internet. Currently, several sources are available on the

internet that receive and archive generated witness values. An

independent auditor, given a trusted witness, may assert the

integrity of all CSIs for a given time period. Once CSIs are

certified, they may be used to validate all tokens covered by the

summaries. Once tokens are validated, an auditor may assert that

any file whose cryptographic digest matches its token has not

been tampered with an extremely high probability.

Regular audits will be continuously conducted, which will make

use of the integrity tokens and the summary integrity information

to ensure the integrity of both the objects and the integrity

information. In our implementation, audits can also be triggered

by an archive manager or by a user upon data access. However we

are assuming that the auditing services are not allowed to change

the content of the archive even if errors are detected. The

responsibility for correcting errors is left to the archive

administrator after being alerted by the auditing service.

The ACE system consists of two components, first is an Integrity

Management Service(IMS) which gathers token requests into

rounds and generates Integrity Tokens(IT) at the end of each

round. The IMS then stores the CSI for that round in its database.

The IMS is also responsible for publishing nightly witness values.

The University of Maryland currently hosts a publicly available

IMS for any party to use. The second component of ACE consists

of multiple, independent Audit Managers(AM) that are installed

locally at different nodes of the archive and that periodically

check the integrity of monitored objects according to a locally

defined policy. There are currently two different Audit Managers

available, a standalone client and a web based application for

monitoring multiple, large collections.

3. ACE AUDITS
There are several different types of audits that can be performed

within ACE. These are local audits of holdings, challenge from

the archive of the IMS integrity, and finally a fully external audit

of both the IMS and AM components.

3.1 Local Auditing
A local ACE audit consists of an AM validating the data under its

domain. For each monitored object, the local audit is performed as

follows:

1. The AM computes the digest of the object and retrieves

its integrity token.

2. Making use of the stored hash value and the proof in the

integrity token, AM computes the round hash value.

3. Using the round id stored in the integrity token, the AM

requests the round hash value from the IMS.

4. The audit manager asserts an object is correct if the

objects computed hash in Step 1 is equal to the hash

value stored in its database and the round hash values

computed in steps 2 and 3 are equal. Otherwise an error

is logged specifying which step failed.

It is clear that if the two object hash values, as well as the two

round hash values are equal, then the object and integrity token

are intact with a very high probability.

3.2 IMS Challenge
The next type of validation that will occur is the challenging of

the IMS by the AM or a third party to determine if its round

hashes are correct. The process for challenging the IMS is

described below:

1. Extract the round ID and daily witness value for that

round from the integrity token and local witness

database.

2. Request the IMS supply a proof for the requested round.

3. Compute a witness value using the round hash agreed

upon in local auditing and the IMS supplied proof.

4. The IMS is considered intact if the computed witness

value and the stored witness value match.

This auditing process allows for the audit manager to store a

minimal amount of data, the witness, and prove that the IMS is

correctly supplying round summaries. To further secure the

process, the witness values should be kept near the archive on

separate, trusted storage. This only allows an archive to assert that

it is internally consistent, we will describe below how a third party

is able to audit an archive.

3.3 Full External Audit
An archive must be able to prove that its holdings are valid. When

an archive is audited by a 3rd party to ensure that its holdings are

intact it may present its stored objects along with their integrity

tokens to the 3rd party.

1. The 3rd party securely obtains a copy of any applicable

witness values by both subscribing to the witness

broadcast and storing them locally, or by using a trusted

source. The trusted source should be independent from

the archive being audited.

2. The IMS performs the steps described in 3.1.

3. If IMS integrity is to be challenged as well, the auditor

will perform the audit described in 3.2 using the locally

generated round summary from step 2 and its copy of the

witness values.

If the computed witness and stored witness values match, it is

clear the object can be considered intact with a high probability.

As the witness value is tied to a specific 24-hour window, the

auditor is also able to assert an object existed in its current form

since the supplied Integrity Token was issued.

4. IMPLEMENTATION AND WORKFLOW
The two software components that implement the audits described

above are the ACE Audit Manager and the ACE Integrity

Management Service. The Audit Manager component is installed

and run locally at an archive to monitor their data. This AM

provides an easy to use web interface for managing multiple

collections stored on a variety of storage resources. The remote

Integrity Management Service is installed at the University of

Maryland and is publically available to issue Integrity Tokens.

While the core functionality of ACE is to secure cryptographic

digests using Integrity Tokens and witness values, the distributed

Audit Manager expands upon this service to provide a general

integrity monitoring system for an archive.

4.1 Integrity Management Service
The Integrity Management Service installed at UMD provides the

IMS functionality described above through a set of simple web

services. These services are available at

http://ims.umiacs.umd.edu:8080/ace-ims/IMSWebService and

described through a Web Service Definition Language[8]

document. The core services are described below:

1. Request Tokens Asynchronously - Request a set of

tokens. This function will return immediately, requiring a

client to perform a callback after the round timeout to

request generated tokens.

http://ims.umiacs.umd.edu:8080/ace-ims/IMSWebService

2. Retrieve Tokens – Retrieve any previously requested

tokens. This will return an error if a round has not yet

completed.

3. Request Tokens Immediately – A blocking function that

will wait until the current round completes and return

any tokens requested tokens to the caller. As this may be

require several seconds, clients that are bulk registering

tokens should use the callback method described above.

4. Get Round Summaries – Get a list of round summaries

for previously generated rounds.

5. Generate Proof For Round – Generate a proof linked the

requested round to the daily witness value. Results for

this are not available until after the daily witness value

has been generated.

The IMS at umiacs is currently configured to generate witness

values at 12:00am EST. These witness values are published to two

publicly available mailing lists, one at UMD a second Google

group. Anyone is free to subscribe to one or both of these lists to

receive nightly notification of certificate generation.

4.2 Audit Manager (AM)
The Audit Manager is a java based web application which runs in

the Tomcat[9] environment and uses a MySQL[10] database for

its data storage. There have been several released of the AM with

the current 1.4.3 having significantly expanded the role of the AM

beyond just integrity token and object validation.

An AM handles both registration of new items and monitoring of

existing items. The AM is able to request tokens for new items in

collections, validate items against their stored digests, and verify

those digests using integrity tokens and the IMS. The AM will not

take corrective action when it encounters an error. That is beyond

the scope of the software and better handled by infrastructure

designed to identify complete replica copies.[2][7] Each

collection is able to specify a different audit policy. It also

provides complete logging of all actions performed against a

collection as well as extensive browsing and reporting capability.

1. Multiple Collections – Multiple collections on different

resources are able to be monitored through a single

instance of an AM.

2. Detailed Logging – Every change observed during an

audit is logged.

3. Reporting – Summary reports are generated and

distributed both at the end of each audit round and upon

a configurable schedule.

4. Customizable Policy – Collections may have

independent policies regarding the frequency when they

are audited.

5. Simple Administration – After the initial installation of

the AM, all management is handled through the web

interface. This allows an archivist or librarian to

completely control audit policy without requiring the

assistance of additional IT support staff.

5. DEPLOYMENT
ACE has been deployed for almost two years in the Chronopolis

Preservation Environment[2]. In addition, the IMS has been

serving tokens for over two years. This has allowed us to observe

how ACE functions in a production environment. Some of these

new features are described in tne next section.

During this time the IMS has performed over 2.18 million

aggregation rounds and generated over 500 witness values. Total

storage space on the IMS under 270MB. Publicly available copies

of every witness value are still available on two different mail list

archives.

The Chronopolis Preservation Environment is a consortium of

three data storage partners, and several data providers. Data

storage partners include the University of Maryland(UMD), San

Diego Supercomputing Center(SDSC)/UCSD Libraries, and the

National Center for Atmospheric Research(NCAR).

Currently, Chronopolis uses the Storage Resource Broker

(SRB)[6] to provide data grid services. The SRB provides a

unified namespace and common functionality for data access and

placement while abstracting access to underlying data resources.

Each Chronopolis partner has an SRB installation backed by a

metadata catalog(MCAT) and disk storage. These SRB

installations are federated, so each site is able to see shared data at

other partner sites.

Collections in Chronopolis are provided by a set of data

providers. Data first staged into the SRB installation at SDSC,

then periodically replicated to resources at UMD and NCAR.

Collections in Chronopolis vary both in the number of files and

size of those files.

Table 1. UMD Chronopolis Collections

Provider Files Directories Size(GB)

CDL 46,762 28 4,291

SIO-GDC 197,718 5,230 815

ICPSR 4,830,625 95,580 6,957

NC-State 608,424 42,207 5,465

The Chronopolis installation required an Audit Manager to be

installed at each of the three partners. This allows each partner to

define how its own policy for monitoring collections. Due to the

nature of the three sites, the monitoring period differs between

each. At UMD and NCAR collections are scanned every 30 days.

SDSC is currently manually controlling audit start due to a

requirement that data be staged to disk prior to auditing.

Over the past year, the UMIACS Chronopolis node has

accumulated 12.2 million log events while monitoring 5.9 million

files. Complete auditing of all collections at UMIACS takes

roughly a week. The following table shows some observed

performance against various chronopolis collections.

Table 2. Audit Throuput

Provider Time(h) Files/s Bandwidth(MB/s)

CDL 20:32 .63 59.44

SIO-GDC 6:49 8.05 34.00

ICPSR 122:48 10.93 16.11

NC-State 32:14 5.24 48.22

6. LESSONS LEARNED
During the past year, several revisions of the AM have been

released in response to the needs of Chronopolis. The core

Integrity token validation has remained unchanged, however as

ACE is continually reading the files and maintaining digests on all

monitored items, several additional features were easily added

without expanding the scope of the AM. The most important of

these are listed below.

1. Audit Throttling – Initially, ACE would process data at

the speed an archive could supply. This sped up audits,

however it caused some unanticipated load issues on the

MCAT component in the sites SRB installations. Limits

were added to control how many queries per second may

be sent to an archive, as well as limits on how fast to

transfer data from an archive. These throttles have

proven effective in limiting the impact of large scale

auditing on network and database resources.

2. Digest comparison – The AM has been expanded to peer

with other Audit Managers to allow for the comparison

of digest lists between different installations.

3. JSON output – Most core functionality of the AM is able

to produce both html and JavaScript Object Notation[5]

output. This allows 3rd party portals to be developed that

aggregate the data from serveral AM installations.

4. Expanded Digest support – MD5 and SHA-256 digests

are now supported to allow the digests calculated in the

AM to be compared with existing digest lists generated

by software such as BagIT.

The UMIACS Chronopolis node is configured to throttle SRB

access by limiting the number of simultaneous audits to 3 and

limiting queries to 10 per second. Through trial and error, these

limits provided the best tradeoff between rapid collection auditing

and minimizing the impact on the underlying archive. Table 2

shows collection auditing prior to these throttles. The only

collection audit impacted by the query speed was the ICPSR

audit. Prior to tuning, the MCAT would respond noticeably

slower during an audit of this collection.

7. FUTURE DIRECTIONS
While the current ACE Audit Manager has shown that is can

reliably monitor many terabytes of disk-based assets, other types

of near-line and offline storage may require different auditing

techniques. In the case of data stored in Chronopolis at SDSC,

their hierarchical storage management system requires that data be

loaded from tape prior to access. Given this type of access, ACE

should be aware of data placement in the offline resources so that

is can request access in an optimal fashion. This would require the

AM to be modified to support a configurable set of access patterns

that would be stored. Defining access patterns for data in the audit

manager may even allow performance improvements when

accessing large collections of files stored on disk resources.

Another area to expand ACE is into monitoring data stored in a

cloud computing environment. Currently the ACE Audit Manager

is designed to operate close to the data it is monitoring. In most

clouds, there is a cost associated with transferring data into or out

of cloud[3][4], therefore remotely running an Audit Manager to

monitor cloud holdings is not feasible. However, ACE integrity

tokens can still be used to secure cloud holdings. As the integrity

tokens can be stored in an untrusted environment, they may be

stored alongside data within a cloud. Verifying that integrity

tokens have not been modified requires very little network access,

therefore it is possibly to validate tokens within a cloud without

incurring a high cost. These tokens may even be generated prior to

inserting data into the cloud and incorporated into part of an

organizations cloud ingestion process. Storing tokens in the cloud

would allow applications running in a cloud to assert the data they

are accessing has not been tampered with or damaged.

8. CONCLUSION
Over the past year, the ACE environment has shown that it can

scale up the workloads required in a large scale archive. It has

provided an easy to use interface for managing terabytes of data

and millions of files. While ACE has proven it performs

remarkably well for monitoring local data collections, we believe

the ACE method for file authentication is well suited for

managing data stored remotely in untrusted cloud resources.

9. REFERENCES
[1] Song S., JaJa J.: Techniques to audit and certify the long-

term integrity of digital archives. In: International Journal on

Digital Libraries, Volume 10, Numbers 2-3 / August, 2009

pp. 123-131

[2] Minor, D., D. Sutton, A. Kozbial, M. Burek, M. Smorul.

Chronopolis Digital Preservation Network . To be published

in The International Journal of Digital Curation, June 2010.

[3] Amazon Simple Storage Service http://aws.amazon.com/s3/

[4] Rackspace Cloudloud http://www.rackspacecloud.com

[5] Crockford, D.: The application/json Media Type for

JavaScript Object Notation (JSON):

http://www.ietf.org/rfc/rfc4627.txt

[6] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC

Storage Resource Broker. In Procs. of CASCON'98,

Toronto, Canada, 1998

[7] Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal,

D.S.H.,Baker, M.: The LOCKSS peer-to-peer digital

preservation system. ACM Trans. Comput. Syst. 23(1), 2–50

(2005). http://doi.acm.org/10.1145/1047915.1047917

[8] Christensen, E, Curbera F., Meredith G., Weerawarana S.:

Web Services Description Language (WSDL) 1.1, W3C Note

15 March 2001. http://www.w3.org/TR/wsdl

[9] Apache Tomcat. http://tomcat.apache.org

[10] MySQL. http://www.mysql.com

http://aws.amazon.com/s3/
http://www.rackspacecloud.com/
http://www.ietf.org/rfc/rfc4627.txt
http://doi.acm.org/10.1145/1047915.1047917
http://www.w3.org/TR/wsdl
http://tomcat.apache.org/

